

Bristol Composites Institute

Tow-steered composites for robust space structures

Dr Rainer Groh Senior Lecturer in Digital Engineering of Structures

BCI/NCC Joint Annual Conference 2023

Royal Academy of Engineering

bristol.ac.uk/composites

Background

- Renewed interest in launch vehicle design:
 - Launch mass comes at a premium
 - Minimise wall thickness
 - Design driven by stability due to compression
- Very sensitive to geometric & loading imperfections
- Goal: reduce sensitivity to imperfections

Compression Buckling

Classic Buckling Analysis

Large discrepancy between linear theory and experimental measurements

NASA SP-8007 Knockdown Factor from 1960s: very conservative design

Tow-Steered Composites

- Curvilinear rather than straight fibre paths
- Manufactured using robotic fibre placement head
- Steering creates:
 - Greater design freedom
 - Ability to steer around features (e.g. cutouts)
 - Ability to transition between different layups
 - Redistribution of load paths

AFP vs CTS

Automated Fibre Placement

Bending

Defects

Gaps/ Overlaps

Rapid Tow Shearing

Shearing

Defect Free

Tesselate

Imperfection-Insensitive Cylinder

- Robust optimisation under uncertainty:
 - Maximise specific buckling load (load/mass) with manufacturing imperfections

Measured Imperfection

Tow-steered outperforms quasi-isotropic straight-fibre

- higher mean buckling load ullet(+11%)
- smaller variance (-80%), ${\color{black}\bullet}$
- higher buckling load at 99.9% reliability level (+300%)

Manufacturing @ iCOMAT

Manufacturing of one QI [±45,0,90]s and one tow-steered cylinder

Wrap rolling onto mandrel

Flat deposition

Cure and pot both ends

Testing @ UoB

Local Steering

- Keep global straight fibre paths & steer locally
 - Only possible due to small steering radii of RTS
 - Embed stiffeners through local thickness increase

Conclusions

- Tow-steering provides additional design freedom
 - Better tradeoff between:
 - 1. Stiffness and
 - 2. Buckling load/imperfection sensitivity
- Possibility for embedded stiffeners \bullet
- Future work through follow-on ESA project:
 - Deposition onto 3D tool
 - Permeability
 - Real satellite central tube
 - In collaboration with prime contractor

10/10

Bristol Composites Institute

Questions?

rainer.groh@bristol.ac.uk

ESA Project

BCI collaborators/PhD students: R Lincoln, C McInnes, A Pirrera, P Weaver

Royal Academy of Engineering

bristol.ac.uk/composites

